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Managing nitrogen legacies to accelerate water
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Increasing incidences of eutrophication and groundwater quality impairment from agricultural nitrogen pollution are threat-
ening humans and ecosystem health. Minimal improvements in water quality have been achieved despite billions of dollars
invested in conservation measures worldwide. Such apparent failures can be attributed in part to legacy nitrogen that has
accumulated over decades of agricultural intensification and that can lead to time lags in water quality improvement. Here, we
identify the key knowledge gaps related to landscape nitrogen legacies and propose approaches to manage and improve water

quality, given the presence of these legacies.

world population, accompanied by large-scale changes in land

use and an intensification of agricultural production practices
to secure an adequate food supply. Human activities have greatly
accelerated the nitrogen (N) cycle, with excess N leaching to surface
and groundwaters, causing problems of eutrophication, aquatic tox-
icity and drinking-water contamination'". Protecting water quality
in the face of a growing population and the corresponding demands
on agriculture is critical to ensuring both water and food security
for generations to come.

Incidences of eutrophication and harmful algal blooms have
increased substantially in recent decades"**°. Task forces have been
formed and policies have been set, from the local to the interna-
tional levels, to address problems with water quality’~'>. Despite
these actions and widespread implementation of a range of con-
servation measures, water quality goals for the most part remain
elusive'”™. Stream nitrate loads in many watersheds where con-
servation measures have been implemented remain high, or even
continue to increase, and downstream water bodies continue to
experience algal blooms, driven by excess nutrients'>'°.

Multiple examples of failures to achieve water quality goals
can be found. In the United States, the Gulf of Mexico Watershed
Nutrient Task Force was formed in 2008 with the goal of reduc-
ing the size of the hypoxic zone to 5,000km? by 2015. In 2015,
however, the hypoxic zone was more than three times the target
size—16,000 km?—and the goal has now been extended to 2035'>".
In Europe, collaborations for mitigating the Baltic Sea eutrophica-
tion problems were established in the 1970s with the creation of
the Helsinki Commission (HELCOM)". The commission’s efforts
contributed to establishment of the Baltic Sea Action Plan, through
which specific nutrient-loading targets were set for each coun-
try in the Baltic Sea drainage basin'®". For the European Union,

| he past 100 years have seen more than a threefold increase in

adoption of the Nitrate Directive in 1991%° and the EU Water
Framework Directive in 2000°' has resulted in numerous national
policies designed to achieve good chemical and ecological status.
Despite these efforts, hypoxic-zone extent in areas across the world,
from the Gulf of Mexico and the Chesapeake Bay in the United
States to the Baltic Sea in Europe, has been either increasing or not
demonstrating any clear decline in the past three decades (Fig. 1)*.

Numerous obstacles can prevent the achievement of water quality
goals, including lack of knowledge regarding appropriate conserva-
tion measures, lags in implementation of new management prac-
tices, limited funding and a lack of willingness of large producers
to reduce fertilizer application rates>°. However, recent research
suggests that one of the key drivers of the apparent lack of success
in water quality improvement following implementation of water-
shed conservation measures is legacy stores of N**=*'. These stores
have accumulated in landscapes over decades of fertilizer applica-
tion and agricultural intensification and can contribute to elevated
N levels in streams, lakes and estuaries decades after inputs have
ceased, leading to time lags in water quality improvement. Here,
‘time lag’ is defined as the time elapsed between implementation
of watershed conservation measures and measurable improvements
in water quality in aquatic systems. Although an understanding
of N legacies and time lags has existed within the scientific com-
munity for decades, this mainly theoretical understanding has not
been translated to field-based quantifications and monitoring that
can adequately support the policy arena, where there still exists an
expectation of short-term water quality improvement'*'**2. A lack
of success in meeting goals generates skepticism and disillusion-
ment by policy makers and farmers on the efficacy of conservation
measures adopted””.

Given the lack of water quality improvement within the targeted
periods, despite billions of dollars in investment, it is critical that
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Fig. 1| Time lines of policy measures and hypoxic-zone size reveal lack of response to policy interventions across Europe and North America. a-c, Time
series for the hypoxic area or volume, the riverine N load and selected policy landmarks and goals for the Chesapeake Bay/Susquehanna River basin®® (a),
Baltic Sea (b) and Gulf of Mexico (GOM)/Mississippi River basin?*?>#-%3 (¢). External loads in a represent dissolved inorganic N (DIN) (NO;~+NO,") for

the Susquehanna River, which accounts for more than half of the annual N load
volume in the Maryland mainstem of the Chesapeake Bay with dissolved oxyge
estimate of all total N inputs (TN) to the Baltic Sea, including riverine inputs, at

to the Chesapeake Bay?°. Hypoxic volume data represent the early June
n (DO) concentrations <2 mg | (ref. 8°). External loads in b represent an
mospheric deposition, direct-point sources and other diffuse inputs®.

Hypoxic area data represent the areal extent of the hypoxic area (DO <2 mgl™) for the Baltic Sea's Bornholm basin®. External loads in ¢ represent DIN
(NO;=+NO,") for the Mississippi River®, and the hypoxic area represents the mid-summer, bottom-water hypoxic area (DO <2 mg|™) (ref. #°).

we develop methodologies to quantify N legacies and lag times.
Such estimates are critical not only for managing expectations, and
setting appropriate policy goals, but also for designing conserva-
tion measures that can contribute to the minimization of lag times.
Despite the overall understanding of the importance of legacy N in
delaying water quality improvement, we currently lack (1) a com-
prehensive characterization of the nature, size and reactivity of N

98

legacies across spatial and temporal scales, (2) quantitative under-
standing of the relationship between the magnitude and forms of
legacy accumulated and time lags to water quality improvement
as a function of landscape and management drivers and (3) policy
instruments and economic incentives that acknowledge time lags
and balance trade-offs between short- and long-term costs, benefits
and risks. Here, we synthesize the various challenges and knowledge
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Fig. 2 | Transport and retention of N across human-impacted landscapes.
Agricultural areas are N sources due to over-application of commercial
fertilizers and livestock manure. N can be retained as biogeochemical
legacy in agricultural soils in the form of organic N. N can also be retained
in a dissolved form in groundwater as hydrologic legacy. N from current
application, as well as legacy stores, is transported to lakes and coastal
zones via overland flow as well as through riverine and subsurface
transport pathways.

gaps that exist regarding N legacies and propose strategies for man-
aging water quality, given the presence of these legacies.

Legacy stores build up over decades of agricultural
intensification
To more effectively manage legacy N stores and their effects on
water quality, it is important to distinguish between various types of
N accumulation. Legacy N can accumulate in numerous landscape
elements, including soils, groundwater, reservoirs, lake and stream
sediments, riparian areas and landfills (Fig. 2). This legacy N can
exist in various forms, including as dissolved nitrate in groundwater
and soil water”** and as organic N within the soil profile*>*.
Mass-balance studies can theoretically be used to estimate the
legacy mass as a function of N inputs (for example, fertilizer N,
manure N, atmospheric N deposition, biological N fixation, waste-
water N) and outputs (crop N uptake, denitrification, riverine N
export)”’. The magnitude of denitrification, however, is extremely
difficult to quantify at the landscape scale, such that until recently
it has been commonly used to close the N mass budget on the basis
of an underlying assumption that there is no legacy accumulation in
the landscape®*°. This assumption has been challenged by recent
studies that have demonstrated evidence of organic N build-up in
the soil profile and dissolved N build-up in the vadose zone and
groundwater®*>*!. Currently, however, there is a lack of quantita-
tive understanding of the magnitudes of legacy N accumulated in
the various environmental compartments. Also uncertain are the
timescales over which legacy N continues to leach into water bodies,
which is a function of not only the total mass of legacy accumulated,
but also the timescales of depletion. These timescales depend on the
mechanisms of release from legacy stores and the degree of connec-
tivity in the system, which is controlled by a range of factors, from
the existence of tile drains, which provide fast transport of water
and nutrients from agricultural fields**, to extreme precipitation
events that mobilize stored legacies.

Relationships between watershed N inputs and stream N
loads

To set appropriate policy goals and to design effective manage-
ment strategies, it is critical to better our understanding of the
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relationship between N inputs to a watershed and N loads in streams
exiting the watershed. Traditionally, stream N loads have been con-
ceptualized as being linearly correlated with net N inputs®~*, with
net N inputs being quantified as the difference between inputs (fer-
tilizer N, manure N, biological N fixation, atmospheric N depo-
sition, N in human waste) and outputs (crop N uptake). These
positive correlations have been established on the basis of a snap-
shot quantification of net N inputs and N loads for a range of water-
sheds (Fig. 3a), with stream N loads constituting approximately
25% of net inputs”. Although this relationship between inputs
and outputs appears to hold true across watersheds, especially in
watersheds with relatively higher N inputs, the relationship often
begins to break down when considering how individual water-
sheds respond to changes in N inputs over time. More specifically,
while some watersheds will demonstrate proportional decreases in
annual N loads in response to unit decreases in N inputs, this lin-
ear behaviour will generally be observed only in watersheds with
minimal lag times (Fig. 3b,c). By contrast, analysis of multi-decadal
trajectories of N inputs and N loading demonstrates that watersheds
commonly exhibit nonlinear responses to decreases in N inputs
(Fig. 3d-k)***>* In other words, decreases in watershed N inputs do
not result in proportional decreases in N loading.

This nonlinearity in response to changes in N inputs can be
described as a hysteresis effect, meaning that watershed N loads at
any point in time are not just a function of current N inputs, but of
the history of N inputs to that watershed over time. If net N inputs
to a watershed have been high for decades, leading to an accumu-
lation of N in soils, sediments and groundwater, N loading may
remain elevated, even after decreases in inputs, due to a slow deple-
tion of legacy N from the system. As an example, net N inputs to the
Wisconsin River watershed in 1970 were approximately 25 kgha='y~!
(Fig. 3d). Over time, N inputs increased by approximately 40% and
then, in the early 1980s, began to decrease again. By 2015, N inputs
had decreased back to 1970 levels, but N loads remained nearly
double what they were in the earlier period. This phenomenon of
higher present-day N loading at 1970-level net N inputs is a clear
example of a nonlinear, hysteretic watershed response and demon-
strates the effects of legacy N accumulation and depletion trajecto-
ries over periods of substantial changes in N inputs. As shown in
Fig. 3, these trajectories for accumulation and depletion of legacy
N can vary across watersheds, leading to variations in the size and
shape of the anticlockwise hysteresis loop that are governed by
numerous natural and anthropogenic controls, including (1) nutri-
ent source and distribution, (2) watershed topography, (3) soil type,
(4) climate, (5) tile-drainage densities and (6) groundwater travel
times*. As an example, in our modelled results (see Supplementary
Fig. 1 for model details), we show that as groundwater travel times
increase, watershed response times also increase, leading to a wider
hysteresis loop and a slower path to watershed recovery (Fig. 3b,c).
The watershed trajectories shown in Fig. 3 are consistent with the
results of both field-scale and watershed-scale studies indicating
that lag times to improvements in water quality are ubiquitous and
often multi-decadal'®*~.

Modelling N legacies and predicting lag times

Quantification of watershed lag times, and the spatial variability
of lag times within and across watersheds, is critically important
for setting realistic policy goals and expectations and for choos-
ing appropriate mitigation strategies. Existing nutrient fate and
transport models, including statistical models such as SPARROW,
GlobalNEWS and GWLF and process-based models such as INCA,
HBV and SWAT, rarely account for N legacies and lag times'®*.
Statistical models generally assume the N cycle to be at a steady
state and thus cannot account for legacy effects****'. Process-based
models theoretically have the ability to capture legacy effects;
however, they usually ignore historical inputs and thus legacy
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Fig. 3 | Relationships between stream N loads and watershed net N inputs. a, Markers, which represent individual watersheds across Europe, North
America, and Asia**®”-#°, are positioned within the plot on the basis of net anthropogenic N inputs to the watershed and stream N loads. b,c, The ELEMeNT
model*® was used to simulate changing relationships between N inputs and stream N loads over time. Trajectories for net N inputs to the watershed are
based on a typical US N input trajectory, with inputs increasing linearly between 1945 and 1990 and then decreasing linearly between 1990 and 2021,
assuming a 33% decrease in N inputs between the 1990 peak and current-day values. In b, we assumed a mean groundwater travel time of 3 years and in ¢
a travel time of 30 years. Lag times increase in ¢ with the increase in groundwater travel times. d-k, These plots represent changing relationships between
N inputs and stream N loads over time for watersheds around the world*#&°>82°0-9: Wisconsin River, USA (d), Mississippi River, USA (e), Conestogo River,
Canada (f), Nith River, Canada (g), Yongan River, China (h), Odense River, Denmark (i), Thames River, UK (j) and Susquehanna River, USA (k). Arrows in
the plot represent the direction of the hysteresis loop, with a wider anticlockwise loop indicating stronger legacy effects.

accumulation and depletion. For example, ref. ** developed a
process-based modelling framework to estimate the effects of
changes in agricultural management on the delivery of N to the
Gulf of Mexico, leading them to estimate that it would cost US$2.7
billion annually to reduce the size of the Gulf hypoxic zone to the
action-plan goal of 5,000 km?. However, they acknowledge that their
modelled conservation scenarios do not consider lag times, and
thus even an immediate adoption of these measures would most
likely not have an immediate effect on hypoxia.

The past few years have seen some progress in the modelling of
watershed legacy N dynamics and lag times. Statistical approaches,
involving prediction of current-year N loads as a function of N
inputs over the past few decades, have been developed to capture
lag times in the Mississippi River basin®® and the Yongan watershed
in eastern China****. The number of process-based models is lim-
ited, with existing models including the Exploration of Long-tErM
Nutrient Trajectories (ELEMeNT) model'**>*>>*, the nitrate time
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bomb model to estimate groundwater nitrate concentrations”, the
watershed-scale LM3-TAN model®, SWAT-LAG, a modification
of the SWAT model with addition of a groundwater travel time
distribution®, and a hillslope-scale aquifer model, also employing
groundwater travel times®. Use of the ELEMeNT model within
the Mississippi River basin has led to estimates of multi-decadal
lag times to achieve policy goals for the Gulf of Mexico, even with
the most aggressive scenarios to reduce surplus N within the water-
shed'>'**. Future research is needed to more explicitly consider
legacy processes in predicting lag times to watershed response.

Lag times confound economic analysis and development of
policy measures

Development of economically efficient water quality improvement
strategies requires rigorous analysis of costs, benefits and effective-
ness that explicitly take legacy effects into account®’. One of the pri-
mary challenges in carrying out such analyses, given legacies, is that
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most of these approaches weigh short-term costs and benefits higher
than long-term improvements in water quality. Two general catego-
ries of tools are used for carrying out cost-benefit analyses of water
quality policies: integrated assessment models (IAMs) and econo-
metric approaches. IAMs couple economic and ecological models
to describe emission of pollutants, their transport through the land-
scape, outcomes of the pollutants in the environment and the valu-
ation of these outcomes. The flexibility of IAMs makes them ideal
for use in analysing potential regulatory policies. However, pollut-
ant transport modules in most IAMs, including the new Hydrologic
and Water Quality System used by the Environmental Protection
Agency, do not consider legacy effects®’. A recent modification of
the Soil and Water Assessment Tool, the pollutant transport model
in the Hydrologic and Water Quality System, clearly shows how
water quality benefits can be overestimated by not accounting for
time lags™.

Legacy effects are also not considered in ad hoc econometric
approaches, which are based on empirical water quality data and
involve the use of regression models to evaluate the effects of past
policies on water quality. In a study of water quality data from 240,000
monitoring sites across the United States, ref. * found declines in dis-
solved oxygen and pH and noted that the biggest exception was for
nitrates, for which there was a slightly positive trend. Legacy effects
would explain this discrepancy as nitrate is known to accumulate in
groundwater and have slow subsurface travel pathways to streams. In
another study of water quality trends across the United States, ref.
found a counter-intuitive positive correlation between the area of
land enrolled in the US Conservation Reserve Program and poor
water quality. As argued by the authors, this finding may be due to
their analysis not accounting for potentially important lags between
land conservation and water quality benefits. In other words, the
long-term influence of legacy N was not taken into account.

Policy instruments for water quality protection

The scientific understanding of time lags has not been adequately
translated to the policy arena, where there still exists an expectation
of short-term improvements in water quality. These expectations
stem from the dramatic improvements in water quality that have
occurred in many regions after implementation of point-source
control measures, such as upgrades to wastewater treatment. Such
improvements have occurred after passage of the 1972 Clean
Water Act in the United States, the 1970 Canada Water Act and
the European Urban Waste Water Treatment Directive of 1991, as
well as widespread implementation of eutrophication control pro-
grammes in China®»*-%. The very different timescales of response
for point-source versus non-point-source pollutants is not often
appreciated, and time lags are sometimes argued to be a generic
excuse to not meet water quality targets™”. The problem is further
confounded by two key challenges: (1) a lack of measured water
quality data at appropriate scales often makes it challenging to eval-
uate where goals have been met and where they have failed;" (2)
soft or voluntary measures adopted for water quality improvement
(for example, Germany, United Kingdom, Canada, United States)
often have low adoption rates while more prescriptive measures (for
example, Denmark, Netherlands) can lead to dissatisfaction™®. It
is often difficult, if not impossible, to disentangle these effects from
delay in water quality improvement due to legacies.

Call for action to accelerate water quality improvement

Given the critical role of legacy N in delaying water quality improve-
ment, it is important to integrate legacy considerations into water-
shed management and planning. While others have emphasized
the importance of taking legacy into account in the policy arena,
recommendations have focused narrowly on quantifying legacy
and raising awareness about time lags®. In the following, we build
on these recommendations to develop a more integrated, systemic
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Fig. 4 | Strategies for solving the legacy N problem. We identify five

key focus areas for developing solutions to problems associated with
landscape-scale N legacies. (1) Magnitudes of N accumulation must be
quantified, and realistic lag times associated with the depletion of these
legacies should be estimated. (2) Nutrient management scenarios should
be developed that allow for a drawdown of N legacies in upland soils. (3)
Spatially explicit estimates of legacy N accumulation will allow us to target
implementation of conservation measures. (4) Watershed conservation
measures should rely on both field-scale (nutrient management, cover
crops) and downstream (wetlands, buffers) measures to minimize

lag times. (5) Diversification of monitoring approaches (for example,
measure nitrous oxide emissions or soil nitrate concentrations instead

of focusing on watershed outlet) to find evidence of success. (6) Ensure
that hydro-economic modelling approaches account for legacy effects and
that time windows for evaluating the success of implemented policy are
sufficiently long.

approach to improving water quality, given the presence of lega-
cies. Specifically, we outline six key strategies towards reaching
this goal (Fig. 4).

Strategy 1—quantify lag times and adjust expectations. While the
existence of lag times is well established, there is still considerable
uncertainty regarding how lag times vary across the landscape. This
uncertainty makes it difficult, if not impossible, for policy makers to
make realistic estimates regarding time frames for achieving water
quality goals. To address this issue, it is important to (1) provide
estimates of lag times in various landscapes using a combination of
field data and modelling and (2) develop methodologies to com-
municate lag times to stakeholders®. The former helps in the setting
of appropriate goals, while the latter helps in managing expecta-
tions when the goals are not met. Given the complexity of describ-
ing watershed biogeochemical processes over long timescales,
legacy modelling is still in its infancy, and data needed to validate
existing models are often limited. Model development needs to be
accompanied by targeted measurement of multiple N stores (for
example, legacy N in soil and groundwater) and fluxes (for example,
N,O fluxes to constrain denitrification, hydrogeologic datasets to
estimate groundwater travel times and fluxes) instead of sole reli-
ance on water quality monitoring at the watershed outlet. Multiple
datasets will help reduce model equifinality and contribute to more
robust predictions over long timescales.

Strategy 2—legacy as a resource. The existence of soil N legacies
implies that, where soil N availability is high, lower fertilizer appli-
cation rates may not lead to notable declines in crop yields. Indeed,
a global meta-analysis of N sources to cereal crops used *N-labelled
fertilizer to show that only a fraction of N in crops (41% for
maize, 32% for rice and 37% for small grains) is from current-year
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Box 1| Legacy solutions: a success story

In the mid-1990s, nitrate concentrations in the three drinking-
water production wells in Oxford County, Ontario, were either
approaching or exceeding the nitrate drinking-water standard
(10mgl™ NO;-N) (ref. °). Concentrations had been increasing
over the past two decades in response to intensive application
of fertilizer and livestock manure on surrounding cropland, and
county water managers at this point were faced with a choice: ei-
ther install a drinking-water treatment plant or directly improve
the quality of groundwater being tapped by the supply wells. Ac-
knowledging the existence of N legacies in the system (Strategy 1),
water managers adopted a strategy that included both long-term
solutions and short-term actions (Strategy 4).

First, in 2002, the county purchased 111ha of land within the
2yr capture zone of the supply wells with the intent of implementing
agricultural management practices that would reduce the leaching
of nitrate to these wells (upper figure). This land was then rented
back to local farmers, with the stipulation that the farmers would
strictly follow guidelines about how the land would be managed.
These guidelines included a change in cropping system, from
continuous corn to a corn-soybean-wheat rotation, the planting of
winter cover crops and reductions in fertilizer use. Changes began
to be implemented during the 2003 growing season, and fertilizer
application rates were reduced by approximately 50%, such that
the site went from an N surplus of 25kgha™yr™ to an N deficit of
27kgha'yr . Interestingly, the reduction in fertilizer application
led to no decrease in crop yield, indicating that the harnessing of
accumulated N legacies within the soil profile can contribute to
both cost savings and environmental benefits (Strategy 2)">"".

To ensure that the nutrient management approach was
succeeding (Strategy 5), soil data from the shallow vadose zone
was used to estimate changes in stored nitrate over time. After two
years, these monitoring data revealed that the total stored NO,-N
mass beneath the root zone, to a depth of 2.5m, had decreased
by approximately 60% and that porewater nitrate concentrations
had decreased by 50%, parallel to the 50% decrease in fertilizer
N inputs. Nitrate concentrations in groundwater wells, however,
showed a slower rate of decline, decreasing from ~10 mgl™" in 2002
to ~7mgl™ in 2013 (lower figure)”. The slower reduction in the
groundwater wells is indicative of longer unsaturated-zone travel
times, with numerical modelling demonstrating that the total
travel time to the drinking-water wells could range from 7 to 40
years (ref. ). By the spring of 2012, these interventions brought
nitrate concentrations in Woodstock public supply wells back
down to safe levels while maintaining agricultural productivity in
the area of the wells.

N fertilizer while the remaining comes from mineralization of soil
organic N%. Field studies also indicate that lowering fertilizer appli-
cation rates does not necessarily impact crop yields’*”, alluding to
the existence of legacy N stores in the landscape (Box 1). Effective
use of these stores can contribute to lower N fluxes to streams with-
out sacrificing crop production while also reducing greenhouse gas
emissions given the strong linear relationship between fertilizer
addition and N,O fluxes”. However, the ability of legacy N stores to
sustain crop yields would vary spatially as a function of soil and crop
type, topography, land use history and climate drivers. Large-scale
adoption of such changes would thus require both technological
and societal innovations. High-resolution airborne and spaceborne
technologies such as lidar and hyperspectral sensors can be used for
developing estimates of soil N demand at the field scale and target
fertilizer applications™. Such precision farming approaches need to
be coupled with agronomic research that focuses on methodologies
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for effective use of soil legacy N. Technological innovations need to
be accompanied by societal changes that provide incentive struc-
tures to protect farmers against crop yield loss from lower fertil-
izer application rates as well as regulatory approaches to penalize
over-application of fertilizers and livestock manure.

Strategy 3—spatial targeting of watershed conservation mea-
sures. In many cases, conservation practices are advocated
broadly, with little regard for differences in agricultural practices
or legacy-related risks and opportunities. As a result, both public
and private funds are often spent for adoption of new practices
that might provide greater water quality benefits elsewhere’”.
Better spatial targeting can be achieved in a variety of ways, includ-
ing better dissemination of information regarding geographically
appropriate management practices and the use of strong eco-
nomic incentives to strategically drive adoption of new practices in
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targeted locations. Regulatory approaches, which have been more
widely adopted in some European countries, are another option for
ensuring that conservation measures are implemented at key loca-
tions”. For example, if a region has large legacy N accumulation
in soils, incentive or regulatory strategies that limit fertilizer appli-
cations can improve water quality without measurable impacts on
crop yield while also reducing emissions of greenhouse gases such
as N,O (ref. ?). A given management strategy in an area with long
lag times may not translate into immediate benefits, while the same
strategy applied to an area with shorter groundwater travel times
may yield a faster response’”’. Non-point-source mitigation strate-
gies based on such spatially and temporally differentiated best man-
agement practices are the most cost-effective and efficient means
of minimizing trade-offs between agricultural production and sus-
tainable water resources’’*’%,

Strategy 4—couple field-scale and downstream measures to
minimize lag times. N legacies can accumulate in the soil or in
groundwater, and different strategies are required for accessing
these different legacies. Reducing fertilizer application can result in
crops accessing soil N legacies, but it does not address groundwater
legacies that have accumulated over decades of fertilizer application.
While some denitrification does occur within the subsurface, it is
limited due to a lack of organic carbon, which limits N removal.
Groundwater legacies can be addressed only through implemen-
tation of more downstream controls such as wetlands™”*”, reser-
voirs and riparian buffers that intercept groundwater flow pathways
and remove nitrate through plant uptake or denitrification. Such
downstream measures contribute to more immediate effects but
need constant maintenance to maintain functionality. Field-scale
measures such as cover crops and nutrient management address
the source of the problem in the soil root zone, but their benefits
sometimes take longer to realize due to groundwater legacies that
have accumulated over decades. A strategic combination of water-
shed conservation measures that address both soil and groundwater
legacies can lead to the fastest watershed response times.

Strategy 5—diversify monitoring to evaluate outcomes and
inform adaptive management. Successful adoption of watershed
conservation is strongly dependent on public perception of the effi-
cacy of watershed management practices. Given the existence of
legacy, and potentially long, time lags to achieve measurable water
quality benefits at larger scales, it is important to quantify the effi-
cacy of watershed conservation practices at a multitude of scales,
from the single tile-drained field to small first-order watersheds to
large drainage basins. Impacts will be apparent at some scales and
for some elements earlier than others, and these initial successes
(or failures) can be used for adaptive watershed management. For
example, adoption of measures such as cover crops and fertilizer
reduction might lead to a more immediate reduction in nitrate in
the soil water, as well as in N,O emissions, but it might take decades
for reductions to be measurable at the watershed outlet™. Thus, for
effective watershed management, we should monitor both aqueous
and gaseous N fluxes at multiple scales, in surface water, ground-
water and soil water, and focus on adaptive management that alters
practices on the basis of measured responses.

Strategy 6—better incorporate assessments of both long-term
and short-term benefits into economic analyses. Current eco-
nomic assessments of water quality policy are often flawed due to
assumptions of immediate water quality benefits in response to
implementation of improved management practices. Economic
tools such as cost-effectiveness analyses and cost-benefit analyses
must therefore be modified to explicitly account for N legacies and
time lags. Hydro-economic modelling approaches must explic-
itly include estimates of the time required to achieve water quality

PERSPECTIVE

benefits through the coupling of economic models with
process-based water quality models that take N legacies into
account. In addition, econometric approaches, designed to evalu-
ate the effectiveness of past policy measures, must account for lag
times and ensure that the period over which effects are evaluated is
sufficiently long.

Conclusion

For the past century, the nitrate pollution problem has grown in tan-
dem with growing populations, an intensification of agriculture and
a warming climate. While many efforts are now focused on revers-
ing this problem through increased controls on wastewater treat-
ment plants and implementation of better agricultural management
practices, our long history of N overuse to maximize crop yields is
continuing to drive high stream nitrate concentrations and coastal
eutrophication. Better understanding the role of legacy N in con-
trolling water quality is crucial to better policy and better environ-
mental outcomes.
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